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We study the external SGEMP boundary layer in one Cartesian dimension in the
steady-state limit. Dimensional arguments backed by explicit calculations
show the surface charge density to be independent of the electrnn charge,
and show that the characteristic potential and dipole moment of the layer
are practically independent of fluence. The general equation of motion is
shown to imply that the electrostatic energy density 1s everywhere twice the
density of kinetic enerqgy stored in the normal component of electron motion.
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SECTION 1
INTRODUCTION

This report is the first in a series of reports to appear on
analytic studies of general SGEMP phenomena. They are intended to investi-
gate the physical phenomena involved in the generation of skin currents,
surface charge densities, and electromagnetic fields, and in coupling
mechanisms to internal circuitry. It is hoped to provide at least a
qualitative and preferably a quantitative understanding on theoretical
grounds, to provide a physical understanding of the various computer code
results obtained to date, and to help in predicting expected order of magni-
tude effects on real three-dimensional targets.

The spirit of our approach is to adopt Fermi's philosophy that
"“one should never do a (detailed) calculation until one already knows what
the answer is." We wish to outline the basic physics of SGEMP phenomena so
that we have a sound theoretical framework in terms of which we can under-
stand the more detailed computer results.

The prescnt report deals with the steady state electron emission
boundary layer. In the future we hope to study the time-dependent transient
build-up of the layer.

1¥ we think of the chronological sequence of events occurring in
a typical SGEMP problem, we have first the arriving X rays illuminating the
exposed satellite surfaces and ejecting photoelectrons. These electrons

constitute an electric current which is the basic driver of Maxwell's



equations. The exposed surface is left positive and this positive charge :
flows away on the satellite surface producing the skin currents.

The photoelectrons above th: positive surface produce a strong
normal elactric field. At relatively high fluences, large numbers of low-
energy electrons are held back by this field and congregatc near the surface,
producing a boundary layer of relatively dense charged plasma. Of the
subsequently emitted electrons, only the more energetic ones can penetrate
the potential of this layer and move through space around the satellite.

Hence the boundary layer greatly affects electrons that penetrate

it by reducing their energy. Also, the layer constitutes a dipole layer !
producing its own external field. In addition, the structure of the layer

near the edges of exposed surfaces will determine how the electrons flow .
around the edges, and may help in understanding the surge of replacement

current around the sides.

The boundary layer structure is a function of the X-ray fluence,
time history, and energy spectrum, and the photoelectric yield of the target.
Its thickness can be less than a miliimeter for high fluences and soft
spectra, and larger than the satellite dimensions for hard spectra and low
fluences so that it hardly exists. This wide range of thicknesses makes it
difficult to handle by a single technique in SGEMP codes designed for a
wide range of fluences and spectra,

In this report we study the structure of the boundary layer in
the steady-state approximation and in one dimension. In this case the
problem can be reduced to quadratures, and so solved completely. Previous

1,2,

workers have investigated various aspects of this problem Here we

consolidate these previous results from a unified point of view and present

some new results of intcrest.
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SECTION 2
CHARACTERISTIC DIMENSIONS

Figure 1 shows a sketch of the relevant geometry. The z direc- i
tion is normal to the surface. The X rays are incident from

above in the normal direction. Electrons are ejected upward with some

angle and energy distribution. In the steady state, the electron number
density n(z), electric field E(z), and potential &(z) will all be single
valued functions of z. '

Let W be a characteristic energy of the emitted electrons, and

v, ® VZwﬂm , (1)

he a characteristic velocity. The clectron number density at the surface,
n(0), which includes both cmitted and returning clectrons, defines a plasma
frequency mp by
4102
W
P m

n(0) . (2)

The energy L) definces the characteristic dimension RD' the Debye
length, by
W v

L = —————l—- = 1
9
D 4men(0) ﬁ“’p

(3)

This is the distance over which n, E, and ¢ vary appreciably.
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Figure 1. Sketch of geometry.

The other dimensional unit of distance is ez/wl. But this is not
a plasma quantity and is at any rate exceedingly small.
10710 kev cm, and w, is a few keV, ez/wl < 10710
of concern.

Since e = 1.44 x

cm, and is not a dimension

It is the distance of closest approach of two electrons with
relative energy Wy

The average distance betwcen electrons is

2 \1/3 2
ne) /3 - (mz °—-) >> &

. (4)
D wl wl

If electrons are ejected at a rate S (electrons/cmZ/sec), which

is the product of the material yield Y(elecs/cal) and the X-ray flux d¢/dt
(calories/cmzlsec),

ro=Y d¢ electrons

0 dt 2 ! 53
cm® sec

then the number density at the surface will be on the order of

6
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n(0) ~ — elecs/cm” , (6)
V1
and the total number of electrons will be on the order of
mv.r
N ~ n(0)k. ~ |—L0 e1ecs/em? . 7)
s D 2
4me
The surface charge density o will be

2
o = eNS ~ \/mv1r0/4n esu/cm” , (8)

aad is, curiously, independent of the electron charge. If e were not a

constant, for example if it were larger, each ejected electron would leave

behind more charge, but the electrons would return more rapidly to the surface,

so that in the steady state ¢ does not depend on e.

Likewise the surface electric field, E(0), will be of order

* E(0) = 4m0 ~ Yammv,r, esu , (9)

170
1/2

and is also independent of e, Both o and E(0) increase as T, and there-

for.. with the square root of the fluence.

The potential ¢, of the surface relative to a distant point will

1
be of order

2 Y
b, ~ E(0)4g ~ 4men(0)8 = = . (10)

Thus the ciaracteristic potential depends only on the electron energy

spectrum, and is independent of fluence.

Tue dinole moment per unit area of the boundary layer will be of

order

R _ 1 _ L2
P eNSRD = ok Tie esu-cm/em”™ (11)

b N et o e o B s v



also independent of fluence. Thus one might expect that the quasi-static
field produced by the boundary layer's dipole moment will become relatively
less and less important as fluence increases since this field is independent
of fluence whereas other sources of dynamical fields increcase with fluence.

The kinetic energy stored in the moving electrons will be of order

!

mv,r
K ~w1Ns~ %mvf\j"‘l‘zg ergs/cm2 , (12)
4me

and the energy stored in the electric field will be of order
E©)’ 2
U~ T 2D ~ K ergs/em” . (13)

Later we show that general principles actually imply that U = 2K exactly
for the normal component of motion. Subsequent detailed calculations in this

report confirm all of the above dimensional arguments.

TIME CONSIDERATIONS

The characteristic turn around time for an electron trajectory will

L my
1 1
t, ~ ~ — N (14)
1 1 wp V 8ﬂ02r
0
1

3

be of order

ls

<

We estimatc ty when Wy = 2 keV, Y = 1.25 x 10°" elec/cal (2 keV blackbody

on Aluminum), and the X-ray pulse FWHM is 3 shakes. Then

-3
t1 ~ 1.4 ———lil——ji~ nanosec , (15)
dp(cal/cm™)

where ¢ is the X-ray fluence, and we have approximated d¢/dt in LEquation 5
-3 2
by its average value ¢/2 FWHM. Hence for fluences above 10 2 cal/cem™,

ty < 1 ns. This indicates that the stcady-state solutions discusscd in this

8
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report will be applicablce when the X-ray flux is not changing appreciably

-

--' » -
over times of order 1 ns at 10° cal/cm” or of order 0.1 ns at 10 1 cal/cm™.

The steady-state solution should begin to become a good approxima-
tion when the total number of electrons ejected

t
SRR o [ L2
N(t) = \-I.dt dt  elecsica” , (16)
0

is larger than the steady-state number

mv
N (t)~J v 2w, (17)
s 2 4
41e
from Equation 7. Assuming a triangular time pulse with a rise time trise'
and a full pulse width T = 2 FWHM,
-(& = D 2 _L— <
T, 0t e (18)
rise

for the rising portion of the pulse. Using 18 and equating 16 and 17 one

obtains
myv
a |
=t .- - 9
t Yrise I N (19
- ¢
or
- . VA
l(\l‘s 1o "
t = 2.238 Vhl(kc\) triic(shakcs) I{shakes! 5 -——"J ns . (20)
. . _ 13 . - . .
Using ¥ = 1.25 ~ 10 T olecrseal, T o= o shakes, tri" = 1 shabke, w, o= hev,
e
-3 1,3
) !
t = J.B(-——-B- S ) nanosec |, toh
ctcal/em™)
. . . . . -1 -1 .2
which viaries from 19 to ] ns as [ o1ncreases trow o to 10 calsem™.



SECTION 3

THE RELATION BETWEEN EMISSION ANGULAR DISTRIBUTION
AND NORMAL ENERGY DISTRIBUTION

TP IR

In our one-dimensional problem only the normal component of moetion

is affected. Electrons are ejected with some energy and angle distribution
s

d"n/dwdq (eiectrons/cnz sec keV ster), but the dynamics influences only the

z component of velocity v_. The emission energy distribution is

dn _ ¢%n 4Q eicctrons | (22) :
: . bl P dudf) cm” sec keV LI

with the integral taken over .ne emission hemisphere, and the thrce-dimensional
velocity distribution is

[PPSR

dn _=m d°n electrons
y

2 3
ca” sec (cm/sec)

e
<

The : component of velocity is distributed according to

b 2]

S
: 2z R ¥

: "f""- fd\-dn ' (=3
0

where

o B L Ll S LT DR EOt e el

10




and ¢ is the azimuth angle. We now assume the emission spectrum factorizes
into energy and angle parts,

2
a“"idna " %3 8(8.¢) , (26)

where 6 is the polar angle from the normal as in Figure 1. Then usingr

dw = wv;dv;, valid when v, is held fixed,

o 2m

dn dw dn

= --— ] gd¢é , (27)
dv, ff_-z\v/n d\vf

w 0

2z
where

v =1ny? (28)
z 2 z <

is the normal component of energy. We now assume the emission is a cosf

distribution,
1 v,
q = - 3 = —
g(9,9) = -~ cosd = —,

which is close to the experimental facts and to the distribution predicted
by the code QUICKE2. In this case, Equation 27 yields for the distribution

of w_,
@
dn__ dw dn (_electrons ) (29)
’ . -~
d": woodw cmn” sec keV

1)

The following several examples of energy distributions dn/dw with a cost

angle distribution and the resulting dn/dw_ are instructive.

1. Monoonegggtic

— = rOS(w - ul) , (30)

11

A = e e d s tee m



T
dn s—oe

Oy -w) (31)
z 1

where 0(x) is the unit step function 6(x) = 1 if x > 0, 6(x) = 0 if x < 0.
A monoenergetic cos6 distribution produces a constant w, distribution.

2. Constant

dn r0

aw W By - W, (32)
r w

dn 0 1

dwz = -w—l n ﬁ' N 0« Hz < Hl » (33)

3. Linear Increase

2r w
gE" g ’ 0 <wc< LI (34)
¥
2r
égl n —7? (wl - w:) , 0« L < W, - (35)
2 w
- 1

A linearly increasing cost distribution produces a linearly decreasing w_

distribution.

4. Linear Decrecase

d_wng (wl-w) ' O<w\'wl. (36)
1
2r w
dn 0 1 -
dw_ " 2 [“'1“‘;?‘":‘“1] v 0w W, (BT
- l -
5. Exponential
r, -w/w
d -
el (38)
1
12




T -X
¢ _d_l}_._g. dx ._—_e

dwz "l
"z/"l

o
"5, E, (v, /%) , (39)

where El(x) is the exponential integral. This case is of interest because
actual electron energy spectra when blackbody photon sources are incident
are very nearly exponential®. Note dn/dwz diverges logarithmically as w, > 0.

6. Linear Times Exponential

dn _To /v
a;-';?\vle , (40)
1
. r, -w_/w
.l ® L, (41)
z 1

Here the z "component" of energy is exponentially distributed. The energy
spectrum 40 is essentially an exponentiai with the low-energy electrons
deleted. Hence, comparing results for cases 5 and 6 above will indicate the
effect of the low-energy clectrons. For example we shall find that the
slope of the charge density, dp/dz, at z = 0 diverges for case 5 but is
finite for case 6. Equation 40 is also the emission energy spectrum for
particles of a Maxwellian gas escaping through a small hole.

These six energy spectra are sketcied in Figure 2. The cos9

distribution always enhances the low energy end of dn/dw_. In particular

dn/dw_ diverges logarithmically as w_+ 0 if dn/dw is non-zero as w ~ 0.

13
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Figure 2. Normal energy distributions from severai
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SECTION 4
SOLUTION FOR BOLTZMANN DISTRIBUTION FUNCTION

The problem may be set up by solving for the scalar potential ¢
from Poisson's equation
2, 3%

V) = —3 = - 4mp(2) , (42)
dz

and for the particle motion from the time independent Boltzmann equation
for the distribution function f

T, ez, -y Of _¢e L S
v . ¥f - < 4 va v, 5 - SE@) %—z- 0, (43)
where
2%
E(z) = - 57 (44)
and
p(z) = - efd"‘ﬁ : (45)

By dividing 43 by -esz(z). and using E(z)dz = -d¢, and dwz = nvzdvz. we
obtain

3 £ :
5w 0 (4e)
z
the general solution to which is any function of w_ - ¢9,
f=flw, - cd) . (47)
15
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The correct function to use in 47 is obtained by matching the boundary
condition on f at the emission surface, obtained as follows. .
The differential rate of emitting electrons is f(z = O)vz and is
given by Equution 23, u
3 2 !
fa = oy, = S0 a D {4%) :
dv cm® sec (cm/sec)
Again assuming a cos® distribution, we have
I‘
m dn 1
f(z=0) = v dw T cosd !
.m_dn
ave ¥
2
m- 1 dn .
Twdw * (49)
The distribution of v, is obtained by intrgrating out the L and vy dependence ‘
to the one-dimensional distribution tunction
) -+
Gy, = jdvxdvy f(z,V) , (50)
so that
fl(z = 0,v2) = fdvxdvy f(o,v) i
w dn
= m '\T-a'; (51)
w

rares

Since Equation 16 also holds for f.,, 47 implies, with the hclp of 29,

l’
dw dn
fl(Z,Vz) s 2m N aw

w_-ed
z

dn_ (w, - ed)
dw_ )

= 2m

16
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We have multiplied by a factor of 2 in Equation 52 to account for the return-
ing electrons in the steady state, and have taken ¢(z = 0) = 0,

NP TR PA T

The charge density 45 is then

LW E AR TR T

p(2) = » e_l‘dvz fl
0

O

ot}

SRR i g (53)
° “z & e@ dw: .
-e

YT

* p(®) .

H
:D-;’

An alternate expression can be obtained with %E-by using the first line of

Cyuation 52 an?! interchenging the order of integrations on v_ and w,
&

_r
o(z) = - 20VTR | R 3’—"} . (54)
ed

\ i G e ——

i Rl ol

These arguments and some in the following section are similar to those of
Higgins®.

TS

Y

17
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SECTION 5
SOLUTION OF POISSON EQUATION

With p given by S3 or 54 as a function of ¢, Poisson's equation is

2
a_;; = - 4mp($)
9z

1321)2

"2 30\3; (55)

so that
E= - 3¢/3z

¢(2) 2)1/2
I snf p(2')dé' + E(a) I (56)

$(a)

is the electric field as 1 function of ¢(z). Here E(a) is an integration

constant, the field at any point z = 4, If the emission energy spectrum has
a maximum energy w_(max), the boundary layer will have a maximum extcnt Zmax
and the maximum potential will be omax = -w:(max)/c = ¢(:max). and E(:max) = 0,

Tvun the electric fietd «111 be

‘y)'u; ) 'l,,;,
E(z) = }- an STRERETA) . (57)
l -,

P

max
1f the emission energy spectrum n.. ‘octrons of arbitrurtv high energy, then
2 = o E(®) = 0, and Equation 57 will stil) hold with & = - v Integrat-
max max

ing once again,

18




v = ae e

- —-——

$

9! |-1/2
2 = f de*) - sn f p(0")d0"‘. . (58)

0 °|le

The inverse of $8 gives ¢(z) and completely solves the one-dimensional

steady-state problem. This solution was given by Hale for several spectra?.

Equations 57 and 53 give for the electric field at the surface

0 wz (max)

E(0)% = 8neVn f Ty M an (59)
X e
max -ed!

Interchanging the orders of integration permits the ¢' integral to be done.
Let w, be a characteristic energy in the emission spectrum. Then we find

wz(max)

E(0)? = l61rV—2mwl ry f dwsz—z;l— d%'l-. (60)
170 z
0

The integral is a dimensionless function of the emission spectrum, and
hence Equation 60 confirms our dimensional arguments in Equations 9, 8, and
7, for E(0), ¢ = E(0)/4n, and Ns = d/e.

The dipole moment per unit area P(z) contributed by all electrons
out to a distance z is
z

P(z) -fzp(z)dz . (61)
-0

Using 9E/3z = 4wp and integrating by parts, this can be expressed as
P() = 35 [0(2) + 2E(2)] . (62)

If the cmission spectrum has a maximum energy wz(max), the total dipole
moment will be

19
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¢ w_(max)
- L max _ "z
P P(zmax) 4n 4ne

independent of fluence as in Equation 11. If there is no maximum energy,

»

(63)

P(z) may diverge as z + =, This occurs for cases 5 and 6, and P(z) is

only weukly dependent on fluence when z >> &D'

20
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SECTION 6
ENERGY CONSIDERATIONS

The equations of motion for the electrons can be written in the
. . . ..
form of a conservation law by introducing the momentum densities T and E,
and momentum flow tensors Pij and Tij of the particles and fieldsS. Then
these equations read

) 3 _
FT (ni + Gi) e (Pi. +T,..)=0, (64)

i
j J J
T, =fmv.fd3v
i i

P, = fmv.v.fdsv
iy. ij

G, = 1 (E X E)i

i ame

where

IS G B
Tij = a7 [3 (B + 898, - (E;E; + B;B)] .

In steady state one dimension, the time derivative and x and y derivatives
in 64 vanish, leaving

)

3z Piz * Ty3) =0, (65)

so that Pi3 + Ti3 is independent of z. In the present probiem, Ei = ES

i3’
B = 0, so the i = 3 component of 65 reads
fmv% fdsv - _[_;? = constant . (66)

[P T R R AP Y PO
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At large z, both terms on the left hand side of 66 separately vanish, so
the constant is zero. The energy density stored in the electrostatic field

is
UE = 57"‘," s (67)

and the density of z component of kinetic energy, ky, is
_f1. 2.3
kz-fzmvzfdv, (68)
so that 66 implics
ug = 2 kz . (69)

The electrostatic energy density is everywhere twice the z kinetic energy
density. With a cosf emission distribution, f is independent of angles so
the x and y contributions to the kinetic energy, kx’ and ky’ are each equal
to kz. The total kinetic energy density is

k = kx + ky + kz
=f—;-mv2fd3v
=3k, (70)
and Equation 69 implies
ug = % k . (71

Integrating on z, the total stored electrostatic energy

kA
max

UE =qu(z) dz ,

0

and the total stored Kinetic energy

i
N i S~ e e nay
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(72)

are rclated by
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SECTION 7
SEVERAL EXAMPLES

In this section we collect some formulas and graphs for four

interesting examples.
Example 1 - Monoenergetic Normal Emission

Electrons are emitted normally at Ty elecs/cmzlsec all with energy

mvf. This case was first discussed by Karzas and Latter'.

[
(NI

The number Jdensity at = = 0 is
n(0) = 2r0/vl , (73)
and the Debye length, Equation 3, is

11 -
2 = ‘l“ 5 . (71)
PaRER o I‘O

The maximum distance the electrons travel is

max n - (75)

Wity
-

The clectric ficld at the surface is

"
F
3
El
-
-

E(0)

= = . (7(1)
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The

surface charge density is

o=V mr0v17n ,

and the total number of electrons is
mr.v
g 01 elecs
N = ~= = 3n{0)z (—-——)
s e V el max| 2
The numter density is
- . -2/3
n(z) = n(0) (1 Z/“max) ,
and diverges as z + Zpax The electric field and potential are
d = b A 1/3
E(z) = E(0) (1 “/“max) ’
w
. 1 . /3
$(2) = Py [ (1 “/zmax) 1]
and the dipole moment is
w
= o3
P = e - 3 eNshmax esu/cm .
The stored kinetic energy is
A T
K = 3 thS .
and the stored electrostatic energy is
UE = 2K,
since there is no x or y motion.
The time for an electron to recach : is
max
_ 32 hax i m,
. . = B
max \l et r

0

25

Ch e e s e —

an

(78)

(79)

(80)

(81.

(82)

(84




E
E
E

T T TR Y

A T S

g PV ] TR T

153"

PO

T I R

T AT T T

et P T T

-

yy——

An electron's trajectory is
2

vit) = v (1 -t/e 0F o<tcr (86)
2ty =z, [1- 0-te 0% o<eer (87)
and
vz) = v, Q - 2z )3 (88)

An electron leaving the surface sees an electric field decreasing linearly
with time.

The number density n(z)/n(0) and electric field E(z2)/E(0) normalized
to their value at z = 0 are shown as curve 1 in Figures 3 and 4. The normalized

potential, -e¢/wl, is shown as curve 1 in Figure 5.

Cxample 2 - cosB angular distribution, monoenergetic energy distribution
(case 1 of Section 3). This is the same as a normal emission,
constant spectrum, and was discussed by Hale?. Here

dn _ .
aw - POO(H - Nl) R

and, with V) T V2w17m, we find

4r0
n(0) = v (89)
1
W,V
R'D = ! ’l > (90
N 167e o
“max- : SZD * N
E(0) =-3V:wmr0v1/3
w
® T._L' ’ (92)
“max
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Figure 3. Normalized electron number density vs. distance
from surface.
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Figure 4. Normalized electric field vs. distance
from surface.
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The maximum distance znax('z) an electron with z component of energy w,
0 < w, < W, will go is

Trajectories and turn around times involve elliptic functions, but in the
case of a particle emitted with energy v, = "1/2’ we find

j

o= \lznrovl/:m , (93) *

i i

Ny = % * %"(o)zmax ’ (94)
n(z) = n(0) (1 - z/zmx)2 R (95) f
E(z) = E(0) (1 - /2., )%, (96) 5
o) = L (1 - 27z Y- 1] (97) A
e max ’

wl 1 H ]

P* e 7 NeZgax (98)
K = 1 w.N (99)
2 7 1's? ;
U, = 2K = 2K (100) )
E : 3K -
V(@) = vy -2/ )P (101) |

- 1/4
zmax(wz) z [t - - wz/wl) ] . (102)

max

1 znax
t (w = 5"1) x 0.49 ~ (103)

1

The number density, electric field, and potential are plotted as

curve 2 in Figures 3, 4, and S.

f-——
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. Example 3 - cos® angular distribution, linear times exponential energy
| distribution (case 6 of Section 3). In this example the inte- !
grals in Equations 57 and 58 can be done analytically.

dn _ Yo -w/¥y
aa-‘-—z'we
"1

E v, * \fiwl/m .

We find
' ro
t n(0) = 2vW —, (104)
: 1
| 11
I =
| g IR 7 Sl (105) |
| e’r,
1
; Define

Ly = £ %

which is the Debye length at the surface of the electrons which are leaving
the surface. Then

E(0) = Vsns:zmr \'

0'1
2wl

hd ol. ? (106)
l *
o= erovl/zﬁ , (107) ;
N o=2=2 02 (108)
s T ¢ 1 i
; n(z) =n(0) (1 + z/zl)’2 , (109) f
|

E(z) = E(0) (1 + z/v,l)“ , (110)
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0(z) = - =L an (14 20, (11)
kK, = LwnN (112)
z 2 1's’
U, = 2K, = 2K (113)
E z 3
The dipole moment per unit area due to electrons out to z is
"1 z
P(2) = g [In1 + 2/2)) - ) (114)
“ 1

For z >> El this depends only logarithmically on the fluence through zl.

An electron emitted with velocity v and energy w = l-nvz has

2
velocity

w
v(z) = v[l -2 -wl n(l + z/!.l)]llz , (115)

and reaches maximum distance

( w/2w1
zmax(V) = 21 e - 1) , (116)
in a time
2.1 w/2w1 =
tmax(v) - E'VI e erf(v/ 2v1) s (117)
where erf(x) is the error function. For v = Vs
11
tmax(vl) = 1.405 q‘ . (118)

Figures 3, 4, and 5 show n{(z), E(z). and ¥(z) in curve 3.
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Example 4 - cos® angular distribution, exponential energy distribution
(case S of Section 3). This distribution corresponds closely
with the experimental distributions for blackbody photon sources.
The complete solution cannot be obtained in closed form.

r. -w/w
dn . 0,

dw w

v, = VZWI/m .

1

We find
To
n(0) = 4¥i = , (119)
1
11
N T {(120)
D 161r3 2ezr0

E(0) -{16n377|l|r0v1/3 : (121

g = erovl/:'nfﬂ- , (122)

mr.,.v
Ng = 0 é - %-n(O)R.D . (123)
3Vme

As a function of the dimensionless potential

e el (124)
the number density and electric field are

n= n(0)[e"" - YT VY] erfc(Wl)) . (125)

E=E[Q - 20)e’Y + 2vTu?/? erfcvi) /2 . (126)

The inverse of Y(z) is
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P
2= g‘“o fdw[u - 2)e Y+ 2v? ertco® 17?127
0

Here, erfc(x) is the complementary error function 1 - erf(x). Figures 3,
4, and 5 show n(z)/n(0), E(z)/E(0), and ¥(z) obtained from a numerical
evaluation of Equations 125 through 127. The abscissae in Figures 3, 4,
and 5 are scaled to the Debye lengths Equaticns 74, 90, 105, or 120,
appropriate to each example.

The asymptotic behaviors are

2
22
n(z)-22=n0) =, (128)
z
\[3}
B(2) 22 E(0) —2, (129) »
2 .
we“’ 2_'*___2_2 , (130)
A%
D N
so that ¢ diverges logarithmically. For z << ED we find
i
n(z) * n(0) [1 - 1.602 /rz ] , (131)
D
e
E(z) + E(0) [1 - V%{-] : (132)
‘D
i
V() > \/-3_i , (133) :_
3%,

so that dn(z)/dz diverges at the surface. |

The dipole moment, Equation 62, diverges logarithmically with ¢
and is only weakly dependent on fluence, as was the case in Example 3.

P(z) vs. z is shown in Figure 6.
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Figure 6. Dipole moment vs. distance from surface.

An electron ejected with z component of velocity V.0 and wz(O) = %
mv.o has z component of kinetic energy at z given by

wz(z) = wz(O) + ed(z) , (134)

which is shown in Figure 7 for several values of wz(O), showing how various

particles slow down with distance from the surface. The maximum distance such

a particle will go, zmax(wz(on, and the time tmax(wz(O)) to reach this
distance are shown in Figure 8.

Particles ejected with W, < W, g0 less than
two Debye lengths.

The total stored kinetic energy is

where K2 is the total kinetic energy stored in the z component of motion,
and the energy in the electric field, UE’ is 2K/3 in accordance with Section 6.
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Figure 7. 2z component of kinetic energy vs. distance v
from surface.
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Figure 8. 2zpay and tpayx as a function of normal
eQQSSion energy.
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Values of the Debye lengths, Equation 120, are given in Reference

Referring to Figure 3, we see tha% in this example the number
density drops off very rapidly at first, falling to half its surface value
in less than 1/4 Debye length. Both of the finite ecnergy spectra, Examples
1 and 2, give a very poor representation of the electron density. In
Example 3 the absence of the low-energy electrons causes the density to
drop off more slowly than in Example 4.

The low-energy electrons double the surface value of n, Equations
104 and 119. The electric fields have a very similar behavior as seen in

curves 3 and 4 in Figure 4.
In Example 4, Figure 6 shows that the dipole moment varies slowly

with distance, remaining of order wl/4ne for many Debye lengths. But at one
Debye length it is only 0.11 w1/4ne.
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SECTION 8
SUMMARY

:
i
£

We have presented the solution of the steady-state one-dimensional
boundary layer problem, summarizing previous work and presenting the solution
for the interesting exponential energy spectrum in some detail. i

n general we find both the electron number density at the surface
and the surface charge density (and also, therefore, the electric field at the
surface) are independent of the electron charge. The characteristic potential
of the layer and the dipole moment per unit area depend only weakly on the _ ;

AP AR LS TN

fluence in the case of an exponential energy spectrum. General principles
b imply that the energy stored in the electric field is just twice that stored

in the kinetic energy of the normal component of motion.

Estimates for the times at which the steady-state solution should

Y L

apply show it to be valid if the X-ray flux changes only slightly in about

1 nanosec for fluences above 10°> cal/cmz.

o -

Laterand
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